Correct option is : (2) \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
\(\because[\mathrm{V}]=[\mathrm{b}]\)
\(\therefore\) Dimension of \( \mathrm{b}=\left[\mathrm{L}^{3}\right]\)
\(\&[\mathrm{P}]=\left[\frac{\mathrm{a}}{\mathrm{V}^{2}}\right]\)
\([\mathrm{a}]=\left[\mathrm{PV}^{2}\right]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^{6}\right]\)
Dimension of \(\mathrm{a}=\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]\)
\(\therefore \ \mathrm{ab}^{-1}=\frac{\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{3}\right]}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)