Correct option is : (4) \(1.876 \times 10^{-6} \mathrm{m}\)
For longest wavelength in Paschen's series:
\(\frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{\mathrm{n}_{1}{ }^{2}}-\frac{1}{\mathrm{n}_{2}{ }^{2}}\right]\)
For longest n1 = 3
n2 = 4
\(\frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{(3)^{2}}-\frac{1}{(4)^{2}}\right]\)
\(\frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{9}-\frac{1}{16}\right]\)
\(\frac{1}{\lambda}=\mathrm{R}\left[\frac{16-9}{16 \times 9}\right]\)
\(\Rightarrow \lambda=\frac{16 \times 9}{7 \mathrm{R}}=\frac{16 \times 9}{7 \times 1.097 \times 10^{7}}\)
\(\lambda=1.876 \times 10^{-6} \mathrm{~m}\)