Correct option is (1) \(\mathrm{P}^{2}=36 \sqrt{3} \mathrm{Q}\)

Area of first \(\Delta=\frac{\sqrt{3} \mathrm{a}^{2}}{4}\)
Area of second \(\Delta=\frac{\sqrt{3} \mathrm{a}^{2}}{4} \frac{\mathrm{a}^{2}}{4}=\frac{\sqrt{3} \mathrm{a}^{2}}{16}\)
Area of third \(\Delta=\frac{\sqrt{3} a^{2}}{64}\)
sum of area \( =\frac{\sqrt{3} \mathrm{a}^{2}}{4}\left(1+\frac{1}{4}+\frac{1}{16} \ldots.\right)\)
\(\mathrm{Q}=\frac{\sqrt{3} \mathrm{a}^{2}}{4} \frac{1}{\frac{3}{4}}=\frac{\mathrm{a}^{2}}{\sqrt{3}}\)
perimeter of \(1^{\text {st }} \Delta=3 \mathrm{a}\)
perimeter of \(2^{\text {nd }} \Delta=\frac{3 \mathrm{a}}{2}\)
perimeter of \(3^{\text {rd }} \Delta=\frac{3 \mathrm{a}}{4}\)
\( \mathrm{P}=3 \mathrm{a}\left(1+\frac{1}{2}+\frac{1}{4}+\ldots\right)\)
\( \mathrm{P}=3 \mathrm{a} .2=6 \mathrm{a}\)
\(a=\frac{P}{6}\)
\(\mathrm{Q}=\frac{1}{\sqrt{3}} \cdot \frac{\mathrm{P}^{2}}{36}\)
\(\mathrm{P}^{2}=36 \sqrt{3} \mathrm{Q}\)