Correct option is (2) 2
\(\vec{a} \times(\hat{i}+\hat{j})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 1 & 0\end{array}\right|\)
\(=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}\)
\((\vec{a} \times(\hat{i} \times \hat{j})) \times \hat{i}=\hat{k}+\hat{j}\)
\(((\vec{a} \times(\hat{i} \times \hat{j})) \times i) \times \hat{i}=\hat{j}-\hat{k}\)
projection of \( \vec{a}\, on \,\hat{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\)
\(=\frac{1+1}{\sqrt{2}}=\sqrt{2}\)