Correct answer is : 80

\(\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}\)
\(\mathrm{C}_{1}=\frac{2 \epsilon_{0} \mathrm{~A}}{2 \times \mathrm{d}}=10 \mu \mathrm{F}\)
\(\mathrm{C}_{2}=\frac{3 \epsilon_{0} \mathrm{~A}}{2 \mathrm{d}}=15 \mu \mathrm{F}\)
\(\mathrm{C}_{\mathrm{eq}}=25 \ \mu \mathrm{F}\)
Now the charge on
\( \begin{aligned} & \mathrm{C}_{1}=10 \mathrm{V} \mu \mathrm{c} \end{aligned} \)
\(\begin{aligned} \mathrm{C}_{2}=1.5 \mathrm{~V} \mu \mathrm{C} \end{aligned} \)
Now force between the plates \(\left[\mathrm{F}=\frac{\mathrm{Q}^{2}}{2 \mathrm{A} \ \in_{0}}\right]\)
\(\frac{100 \mathrm{V}^{2} \times 10^{-12}}{2 \times 2 \times 10^{-4} \ \epsilon_{0}}+\frac{225 \mathrm{V}^{2} \times 10^{-12}}{2 \times 2 \times 10^{-4} \times \ \epsilon_{0}}=8\)
\(325 \mathrm{~V}^{2}=8 \times 4 \times 10^{-4} \times 8.85\)
\(\mathrm{V}^{2}=\frac{32 \times 8.85 \times 10^{-4}}{325}\)
\(\therefore \ \mathrm{V}=\sqrt{\frac{283.2 \times 10^{-4}}{325}}\)
\(\mathrm{V}=0.93 \times 10^{-2}\)