Correct option is : (1) 30 cm (right of third lens)
Here we will use lens formula three times, for lens 1
\(
\begin{aligned}
& \mathrm{u}=-30, \mathrm{f}=10
\end{aligned}\)
\(
\begin{aligned}
& \frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}
\end{aligned}
\)
\(
\begin{aligned}
& \frac{1}{\mathrm{v}_1}-\frac{1}{-30}=\frac{1}{10} \Rightarrow \mathrm{v}_1=15 \mathrm{cm}
\end{aligned}
\)
For \(2^{\text {nd }}\) lens \( \mathrm{u}=10, \mathrm{f}=-10\)
\(
\begin{aligned}
& \mathrm{v}_2 \rightarrow \infty
\end{aligned}
\)
\(\begin{aligned}\ & \mathrm{u}_3 \rightarrow-\infty \\ \end{aligned} \)
\(\begin{aligned} \mathrm{v}_3 \rightarrow+30 \mathrm{~cm} \end{aligned}\)