Correct option is : (3) 1 : 1

Magnetic field inside wire
\( \text {Biside}=\frac{\mu_0 \mathrm{Jr}}{2}=\frac{\mu_0 \mathrm{Ir}}{2 \mathrm{A}}=\frac{\mu_0 \mathrm{Ir}}{2 \pi \mathrm{a}^2}\)
\( \mathrm{r} \rightarrow \mathrm{a} / 2 \)
\( \text {Biside}=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{a}} \)
\( \text {Magnetic field outside }\left(B_2\right) =\frac{\mu_0 \mathrm{i}}{2 \pi \mathrm{r}} \)
\( = \frac{\mu_0 \mathrm{i}}{2 \pi(2 \mathrm{a})} \)
\(= \frac{\mu_0 \mathrm{i}}{4 \pi \mathrm{a}}\)
\( \text {Biside }=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{a}} \)
So \( \mathrm{B}_1=\mathrm{B}_2 \Rightarrow 1: 1 \)