Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
6.4k views
in Mathematics by (50.3k points)
closed by

If \(1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+\frac{49-20 \sqrt{6}}{180}+\ldots.\) upto \(\infty=2\left(\sqrt{\frac{b}{a}}+1\right) \log _{e}\left(\frac{a}{b}\right)\), where \(a\) and \(b\) are integers with \(\operatorname{gcd}(a, b)=1\), then \(11 a+18 b\) is equal to ______.

1 Answer

+2 votes
by (50.1k points)
selected by
 
Best answer

Correct answer: 76

\(\mathrm{S=1+\frac{x}{2 \sqrt{3}}+\frac{x^{2}}{18}+\frac{x^{3}}{36 \sqrt{3}}+\frac{x^{4}}{180}+\ldots \infty}\)

Put \(\frac{x}{\sqrt{3}}=t\), where \(x=\sqrt{3}-\sqrt{2}\)

\(\mathrm{S}=1+\frac{\mathrm{t}}{2}+\frac{\mathrm{t}^{2}}{6}+\frac{\mathrm{t}^{3}}{12}+\frac{\mathrm{t}^{4}}{20}+\ldots\)

\(\mathrm{S}=1+\mathrm{t}\left(1-\frac{1}{2}\right)+\mathrm{t}^{2}\left(\frac{1}{2}-\frac{1}{3}\right)+\mathrm{t}^{3}\left(\frac{1}{3}-\frac{1}{4}\right)+\mathrm{t}^{4}\left(\frac{1}{4}-\frac{1}{5}\right)\)

\(\mathrm{S}=\left(1+\mathrm{t}+\frac{\mathrm{t}^{2}}{2}+\frac{\mathrm{t}^{3}}{3}+\frac{\mathrm{t}^{3}}{4}+\ldots\right)-\left(\frac{\mathrm{t}}{2}+\frac{\mathrm{t}^{2}}{3}+\frac{\mathrm{t}^{3}}{4}+\frac{\mathrm{t}^{4}}{5}+\ldots\right)\)

\(\mathrm{S}=\left(\mathrm{t}+\frac{\mathrm{t}^{2}}{2}+\ldots\right)-\frac{1}{\mathrm{t}}\left(\mathrm{t}+\frac{\mathrm{t}^{2}}{2}+\frac{\mathrm{t}^{3}}{3}+\ldots\right)+2\)

\(\mathrm{S}=2+\left(1-\frac{1}{\mathrm{t}}\right)(-\log (1-\mathrm{t}))=\left(\frac{1}{\mathrm{t}}-1\right) \log (1-\mathrm{t})+2\)

\(\mathrm{S}=2+\left(\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}-1\right) \log \left(1-\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}}\right)\)

\(\mathrm{S}=2+\left(\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}\right) \log \mathrm{e} \frac{\sqrt{2}}{\sqrt{3}}\)

\(\mathrm{S}=2+\frac{(\sqrt{6}+2)}{2} \log \mathrm{e} \frac{2}{3}=2+\left(\sqrt{\frac{3}{2}}+1\right) \log \mathrm{e} \frac{2}{3}\)

\(\mathrm{a}=2, \mathrm{~b}=3\)

\(11 \mathrm{a}+18 \mathrm{b}=11 \times 2+18 \times 3=76\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...