
Let PQ be the Ordinate.
Hence P has y- coordinate
= 4a, as y2= 4ax
\(\Rightarrow x = \frac{y^2}{4a}= \frac{(4a)^2}{4a}=4a\)
\(\Rightarrow\) In \(\Delta OMP,\)
\(tan\theta=\frac{4a}{4a}=1\)
\(\Rightarrow\theta=45^\circ\)
\(\Rightarrow\angle POQ=2\theta=90^\circ\)