Correct answer is : 17
\(\mathrm{X}=1 \)
\( \frac{{ }^5 \mathrm{C}_1 \times{ }^4 \mathrm{C}_2}{{ }^9 \mathrm{C}_3}=\frac{5 \times 6}{84}=\frac{5}{14} \)
\(\mathrm{X}=2 \)
\( \frac{{ }^5 \mathrm{C}_2 \times{ }^4 \mathrm{C}_1}{{ }^9 \mathrm{C}_3}=\frac{10 \times 4}{84}=\frac{10}{21} \)
\(\mathrm{X}=3\)
\( \frac{{ }^5 \mathrm{C}_3}{{ }^9 \mathrm{C}_3}=\frac{5 \times 4 \times 3}{9 \times 8 \times 7}=\frac{5}{42}\)
\(\mathrm{Y}=1=\frac{10}{21} \)
\(\mathrm{Y}=2=\frac{5}{14}\)
\(\mathrm{Y}=3=\frac{{ }^4 \mathrm{C}_3}{{ }^9 \mathrm{C}_3}=\frac{4 \times 3 \times 2}{9 \times 8 \times 7}=\frac{1}{21}\)
\(\bar{X}=p(x=1) x_1+p(x=2) x_2+p(x=3) x_3\)
\( \bar{X}=\frac{5}{14}+\frac{20}{21}+\frac{15}{42} \)
\( \bar{X}=\frac{30+80+30}{84}=\frac{140}{84}\)
\( \bar{Y}=p(y=1) y_1+p(y=2) y_2+p(y=3) y_3 \)
\(\bar{Y}=\frac{20+30+6}{42}=\frac{20+30+6}{42}=\frac{56}{42}\)
\(=7 \bar{X}+4 \bar{Y}\)
\(=\frac{140}{12}+\frac{56}{21} \times 2=\frac{980+448}{84}=\frac{1428}{84}=17 \text { Ans. }\)