Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
16.2k views
in Mathematics by (46.6k points)
closed by

Let \(\lambda, \mu \in R\). If the system of equations

\(3 x+5 y+\lambda z=3\)

\(7 x+11 y-9 z=2\)

\(97 x+155 y-189 z=\mu\)

has infinitely many solutions, then \(\mu+2 \lambda\) is equal to :

(1) 25

(2) 24

(3) 27

(4) 22

1 Answer

+1 vote
by (49.9k points)
selected by
 
Best answer

Correct option is : (1) 25 

\(3 x+5 y+\lambda z=3\) 

\(7 x+11 y-9 z=2\) 

\(97 x+155 y-189 z=\mu \) 

\(\text { By cramer's rule, } \Delta=\Delta_1=\Delta_2=\Delta_3=0\) 

\( \left|\begin{array}{ccc} 3 & 5 & \lambda \\ 7 & 11 & -9 \\ 97 & 155 & -189 \end{array}\right|=0\) 

\( \mathrm{R}_3 \rightarrow \mathrm{R}_3-14 \mathrm{R}_2\) 

\(\left|\begin{array}{ccc} 3 & 5 & \lambda \\ 7 & 11 & -9 \\ -1 & 1 & -63 \end{array}\right|=0\)

\(\mathrm{C}_1 \rightarrow \mathrm{C}_1+\mathrm{C}_2\) 

\( 2\left|\begin{array}{ccc} 4 & 5 & \lambda \\ 9 & 11 & -9 \\ 0 & 1 & -63 \end{array}\right|=0 \) 

\( -1(-36-9 \lambda)-63(44-45)=0\) 

\(36+9 \lambda+63=0\) 

\( 9 \lambda=-99 \)

\(\lambda=-11\) 

\(\Delta_3=0\) 

\( \left|\begin{array}{ccc} 3 & 5 & 3 \\ 7 & 11 & 2 \\ 97 & 155 & \mu \end{array}\right|=0 \)

\( \mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_1\) 

\( \left|\begin{array}{ccc} 3 & 2 & 3 \\ 7 & 4 & 2 \\ 97 & 58 & \mu \end{array}\right|=0\) 

\(C_1 \rightarrow C_1-C_3\) 

\( \left|\begin{array}{ccc} 0 & 2 & 3 \\ 5 & 4 & 2 \\ 97-\mu & 58 & \mu \end{array}\right|=0\)

\( -5(2 \mu-174)+(97-\mu)(4-12)=0 \)

\(10 \mu-870+776-8 \ \mu=0 \) 

\(2 \mu=94 \)

\( \mu=47\) 

\(\mu+2 \lambda=47-22\) 

 = 25

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...