Correct option is : (3) 4
\( \int \frac{2-\tan x}{3+\tan x} d x=\int \frac{2 \cos x-\sin x}{3 \cos x+\sin x} d x\)
\(2 \cos x-\sin \mathrm{x}=\mathrm{A}(3 \cos \mathrm{x}+\sin \mathrm{x})+\mathrm{B}(\cos \mathrm{x}-3 \sin \mathrm{x})\)
\(3 \mathrm{A}+\mathrm{B}=2\)
A - 3B = - 1
\(\Rightarrow \mathrm{A}=\frac{1}{2}, \mathrm{~B}=\frac{1}{2}\)
\(\therefore\ \int \frac{2 \cos \mathrm{x}-\sin \mathrm{x}}{3 \cos \mathrm{x}+\sin \mathrm{x}} \mathrm{dx}\)
\(=\frac{x}{2}+\frac{1}{2} \ln |3 \cos x+\sin x|+C\)
\(=\frac{1}{2}(x+\ln |3 \cos x+\sin x|)+C\)
\(=\frac{1}{2}(\alpha x+\ln |\beta \sin x+\gamma \cos x|)+C\)
\(\alpha=1, \beta=1, \gamma=3\)
\(\therefore \alpha+\frac{\gamma}{\beta}=1+\frac{3}{1}=4\)