Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
19.7k views
in Mathematics by (46.6k points)
closed by

\(\text{Let}\,\int \frac{2-\tan x}{3+\tan x} d x=\frac{1}{2}\left(\alpha x+\log _{e}|\beta \sin x+\gamma \cos x|\right)+C\), where C is the constant of integration.

Then \(\alpha+\frac{\gamma}{\beta}\) is equal to : 

(1) 3

(2) 1

(3) 4

(4) 7

1 Answer

+1 vote
by (49.9k points)
selected by
 
Best answer

Correct option is : (3) 4 

\( \int \frac{2-\tan x}{3+\tan x} d x=\int \frac{2 \cos x-\sin x}{3 \cos x+\sin x} d x\)

\(2 \cos x-\sin \mathrm{x}=\mathrm{A}(3 \cos \mathrm{x}+\sin \mathrm{x})+\mathrm{B}(\cos \mathrm{x}-3 \sin \mathrm{x})\)

\(3 \mathrm{A}+\mathrm{B}=2\)

A - 3B = - 1 

\(\Rightarrow \mathrm{A}=\frac{1}{2}, \mathrm{~B}=\frac{1}{2}\)

\(\therefore\ \int \frac{2 \cos \mathrm{x}-\sin \mathrm{x}}{3 \cos \mathrm{x}+\sin \mathrm{x}} \mathrm{dx}\)

\(=\frac{x}{2}+\frac{1}{2} \ln |3 \cos x+\sin x|+C\)

\(=\frac{1}{2}(x+\ln |3 \cos x+\sin x|)+C\)

\(=\frac{1}{2}(\alpha x+\ln |\beta \sin x+\gamma \cos x|)+C\)

\(\alpha=1, \beta=1, \gamma=3\)

\(\therefore \alpha+\frac{\gamma}{\beta}=1+\frac{3}{1}=4\) 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...