Correct option is : (4) 51
\( f(x)=a x^{3}+b x^{2}+c x+41\)
\(f^{\prime}(x)=3 a x^{2}+2 b x+c x\)
\(\Rightarrow \mathrm{f}^{\prime}(1)=3 \mathrm{a}+2 \mathrm{b}+\mathrm{c}=2\) ..........(1)
\(f^{\prime \prime}(n)=6 a x+2 b\)
\(\Rightarrow f^{\prime \prime}(1)=6 a+2 b=4\)
\(3 a+b=2\) .........(2)
(1) - (2)
\(\mathrm{b}+\mathrm{c}=0\) ..........(3)
\(\mathrm{f}(1)=40\)
\(a+b+c+41=40\)
use (3)
\(a+41=40\)
by (2)
\(-3+b=2 \Rightarrow b=5 \ \&\ c=-5\)
\(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=1+25+25=51\)