Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
6.5k views
in Mathematics by (46.6k points)
closed by

Let \(\lim \limits_{n \rightarrow \infty}\left(\frac{n}{\sqrt{n^{4}+1}}-\frac{2 n}{\left(n^{2}+1\right) \sqrt{n^{4}+1}}+\frac{n}{\sqrt{n^{4}+16}}-\frac{8 n}{\left(n^{2}+4\right) \sqrt{n^{4}+16}}\right.\) \(\left.+\ldots \ldots .+\frac{n}{\sqrt{n^{4}+n^{4}}}-\frac{2 n \cdot n^{2}}{\left(n^{2}+n^{2}\right) \sqrt{n^{4}+n^{4}}}\right)\) be \(\frac{\pi}{k}\), using only the principal values of the inverse trigonometric functions. Then \(\mathrm{k}^{2}\) is equal to ______.

1 Answer

+2 votes
by (49.9k points)
selected by
 
Best answer

Correct answer is : 32 

\(\sum\limits_{r=1}^{\infty} \frac{n}{\sqrt{n^{4}+r^{4}}}-\frac{2 n r^{2}}{\left(n^{2}+r^{2}\right) \sqrt{n^{4}+r^{4}}}\)

\(\sum\limits_{r=1}^{\infty} \frac{\frac{1}{n}}{\sqrt{1+\left(\frac{r}{n}\right)^{4}}}-\frac{2\left(\frac{1}{n}\right)\left(\frac{r}{n}\right)^{2}}{\left(1+\left(\frac{r}{n}\right)^{2}\right) \sqrt{1+\left(\frac{r}{n}\right)^{4}}}\)

\(\Rightarrow \int\limits_{0}^{1} \frac{d x}{\sqrt{1+x^{4}}}-\frac{2 x^{2} d x}{\left(1+x^{2}\right) \sqrt{1+x^{4}}}\)

\(\Rightarrow \int\limits_{0}^{1} \frac{1-x^{2}}{\left(1+x^{2}\right) \sqrt{1+x^{4}}} d x\)

\(\Rightarrow \int\limits_{0}^{1} \frac{\frac{1}{x^{2}}-1}{\left(x+\frac{1}{x}\right) \sqrt{x^{2}+\frac{1}{x^{2}}}} d x\)

\(\Rightarrow-\int\limits_{0}^{1} \frac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}\right) \sqrt{\left(x+\frac{1}{x}\right)^{2}-2}} d x\)

\(\mathrm{x}+\frac{1}{\mathrm{x}}=\mathrm{t} \Rightarrow 1-\frac{1}{\mathrm{x}^{2}} \mathrm{dx}=\mathrm{dt}\)

\( \Rightarrow-\int\limits_{\infty}^{2} \frac{\mathrm{dt}}{\mathrm{t} \sqrt{\mathrm{t}^{2}-2}}\) 

\( \Rightarrow-\int\limits_{\infty}^{2} \frac{\mathrm{tdt}}{\mathrm{t}^{2} \sqrt{\mathrm{t}^{2}-2}}\) 

\(\text{take} \ \mathrm{t}^{2}-2=\alpha^{2}\) 

\(\mathrm{t\ dt}=\alpha \ \mathrm{d} \alpha\) 

\(\Rightarrow-\int\limits_{\infty}^{\sqrt{2}} \frac{\alpha \mathrm{d} \alpha}{\left(\alpha^{2}+2\right) \alpha}\)

\(\Rightarrow-\int\limits_{\infty}^{\sqrt{2}} \frac{\mathrm{d} \alpha}{\alpha^{2}+2}\) 

\(\left.\Rightarrow \frac{-1}{\sqrt{2}} \tan ^{-1} \frac{\alpha}{\sqrt{2}}\right]_{\infty}^{\sqrt{2}}\) 

\(\Rightarrow \frac{-1}{\sqrt{2}}\left\{\tan ^{-1} 1\right\}+\frac{1}{\sqrt{2}} \tan ^{-1} \infty\) 

\(\Rightarrow \frac{1}{\sqrt{2}}\left\{\frac{\pi}{2}-\frac{\pi}{4}\right\}\)

\(\Rightarrow \frac{\pi}{4 \sqrt{2}}=\frac{\pi}{\mathrm{K}}\) 

\(\text{So} \ \mathrm{K}=4 \sqrt{2}\)

\(\mathrm{K}^{2}=32\)  

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...