Correct answer is : 80

\( \begin{aligned} & T=S_1 \end{aligned} \)
\( \begin{aligned} x_1+y_1 y_1=x_1^2+y_1^2 \end{aligned} \)
It passes through \((\alpha, 0)\)n
\( \begin{aligned} & \therefore \alpha \mathrm{x}_1=\mathrm{x}_1^2+\mathrm{y}_1^2 \end{aligned} \)
\( \begin{aligned} \alpha\left(2 \mathrm{t}^2\right)=4 \mathrm{t}^4+16 \mathrm{t}^2 \quad\left(\mathrm{x}_1=2 \mathrm{t}^2, \mathrm{y}_1=4 \mathrm{t}\right) \\ \end{aligned} \)
\( \begin{aligned} & \alpha=2 \mathrm{t}^2+8 \\ \end{aligned} \)
\( \begin{aligned} & \mathrm{t}^2=\frac{\alpha-8}{2} \\ \end{aligned} \)
\( \Rightarrow \alpha>8\)
Also,
\(4t^2+16t^2-4<0\) (point lies inside the circle)
\(t^2=-2+\sqrt{5}\)
\(\alpha=4+2\sqrt5\)
\(\therefore\alpha\in(8,4+2\sqrt 5)\)
\(\therefore (2q-p)^2=80\)