Correct answer is : 1011
\(\left(\frac{1}{\alpha+1}+\frac{1}{\alpha+2}+\ldots+\frac{1}{\alpha+2012}\right)\)
\( -\left\{\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{2023}-\frac{1}{2024}\right)\right\}=\frac{1}{2024} \)
\( \Rightarrow \left(\frac{1}{\alpha+1}+\frac{1}{\alpha+2}+\ldots+\frac{1}{\alpha+2012}\right) \)
\( -\left\{\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\ldots+\frac{1}{2023}\right. \)
\( \left.-\frac{1}{2024}-2\left(\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2022}\right)\right\}=\frac{1}{2024} \)
\(\Rightarrow \left(\frac{1}{\alpha+1}+\frac{1}{\alpha+2}+\ldots+\frac{1}{\alpha+2012}\right) \)
\( -\left(\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{2023}\right)\)
\(+\frac{1}{2024}+\left(\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{1011}\right)=\frac{1}{2024} \)
\(\Rightarrow \frac{1}{\alpha+1}+\frac{1}{\alpha+2}+\ldots+\frac{1}{\alpha+2012} \)
\(\frac{1}{1012}+\frac{1}{1013}+\ldots+\frac{1}{2023} \)
\(\Rightarrow \alpha=1011\)