Correct option is (B) \(\frac{9}{11 x}+\frac{13}{11} x^{10}\)
\(\lim\limits_{t \rightarrow x} \frac{t^{10} f(x)-x^{10} f(t)}{t^{9}-x^{9}}=1\)
\(\lim\limits_{t \rightarrow x} \frac{10t^9f(x) - f'(t)x^{10}}{9t^8}=1\)
\( \Rightarrow 10 x^{9} f(x)-f(x) x^{10}=9 x^{8} \)
\(\Rightarrow f^{\prime}(x)-\frac{10}{x} f(x)=-\frac{9}{x^{2}}\)
\( { IF }=e^{-\int \frac{10}{x} d x}=\frac{1}{x^{10}}\)
\(\therefore \text {Sol} ^n\)
\(\frac{y}{x^{10}}=\int-\frac{9}{x^{10}} \times \frac{1}{x^{2}} d x \)
\( =-9 \int x^{-12} d x\)
\(\frac{y}{x^{10}}=\frac{9}{11} x^{-11}+C\)
\(\because y(1)=2 \Rightarrow C=\frac{13}{11}\)
\(\Rightarrow y=\frac{9}{11 x}+\frac{13}{11} x^{10}\)