Correct answer is : 200
Frequency received by observer
\(f_0=\left(\frac{C \pm V_0}{C \pm V_S}\right) f_{\mathrm{s}}, C\) is speed of sound
Case-1 :
\(f_1=\left(\frac{C+V}{C-V}\right) f_S\)
\(288=\left(\frac{\mathrm{C}+\mathrm{V}}{\mathrm{C}-\mathrm{V}}\right) 240\)
Case-2 :
\(\mathrm{f}_2=\left(\frac{\mathrm{C}-\mathrm{V}}{\mathrm{C}+\mathrm{V}}\right) \mathrm{f}_{\mathrm{s}}\)
\(\mathrm{n}=\left(\frac{\mathrm{C}-\mathrm{V}}{\mathrm{C}+\mathrm{V}}\right) 240\)
multiply the two equations, we get.
(288) (n) = (240) (240)
N = 200