Correct answer is : 18
Linear impulse \(\int F d t=\Delta\) momentum
\(=\mathrm{m}\left(\mathrm{V}_{\mathrm{cm}}-0\right) \)
\( \mathrm{P}=\mathrm{m}\left(\omega \mathrm{r}_{\mathrm{cm}}\right)\)
\(=\mathrm{m} \omega\left(\mathrm{L}+\frac{\mathrm{L}}{2}\right) \)
\(\mathrm{P}=\mathrm{m} \omega\left(\frac{3 \mathrm{~L}}{2}\right)\) .....(i)
Angular impulse \(\int \, \tau dt = \Delta \) angular momentum
\(\int \mathrm{r} \times \mathrm{Fdt}=\Delta \mathrm{L}\)
\(\mathrm{r} \times \int \mathrm{Fdt}=\mathrm{I}(\omega-0) \text {, and } \mathrm{I}\) is moment of inertia about axis of rotation.
\( \left(\mathrm{L}+\frac{\mathrm{L}}{2}+\mathrm{x}\right) \times \mathrm{P}=\left(\mathrm{I}_{\mathrm{cm}}+\mathrm{md}^2\right) \omega\)
\(=\left(\frac{\mathrm{mL}^2}{12}+\mathrm{m}\left(\mathrm{L}+\frac{\mathrm{L}}{2}\right)^2\right) \omega\)
\( \left(\frac{3 \mathrm{~L}}{2}+x\right) P=\mathrm{mL}^2\left(\frac{1}{12}+\left(\frac{3}{2}\right)^2\right) \omega\)
\(\left(\frac{3 L}{2}+x\right) P=\mathrm{mL}^2\left(\frac{7}{3}\right) \omega \) .....(ii)
Divide eq.- (i) & (ii)
\(\left(\frac{3 \mathrm{~L}}{2}+x\right)=\frac{\mathrm{L}\left(\frac{7}{3}\right)}{\left(\frac{3}{2}\right)} \)
\(\frac{3 \mathrm{~L}}{2}+x=\mathrm{L}\left(\frac{14}{9}\right)\)
\(x=\frac{L}{18}\)