Q. If \(\lambda= \log_{\tiny2}^{\tiny\sqrt{12+\sqrt{12+\sqrt{12+...\infty}}}}\) and\(\phi = \lambda^{\lambda+1} \sum_{\psi=1}^{\lambda}(\frac{\psi^{2(\int_{1}^{\lambda} d\gamma)}}{\lambda}+\lambda)\), then compute the value of \((\frac{2\phi+4}{3+\lambda})\).
Options are ;
A. 12 |
B. 121 |
C. 11 |
D. 144 |