Correct answer: 27560
a1 = b1 = 1
an = an – 1 + 2 (for n ≥ 2) ; bn = an + bn – 1
a2 = a1 + 2 = 1 + 2 = 3 ; b2 = a2 + b1 = 3 + 1 = 4
a3 = a2 + 2 = 3 + 2 = 5 ; b3 = a3 + b2 = 5 + 4 = 9
a4 = a3 + 2 = 5 + 2 = 7 ; b4 = a4 + b3 = 7 + 9 = 16
a15 = a14 + 2 = 29
b15 = 225
\(\sum\limits_{n = 1}^{15} a_n b_n = 1\times 1+3\times 4+5\times 9+....29\times 225\)
\(\therefore \sum\limits_{n = 1}^{11} a_n b_n = \sum\limits_{n = 1}^{15} (2n -1)n^2 = \sum \limits_{n = 1}^{15}2n^3 - \sum\limits_{n=1}^{15}n^2\)
\(= 2\left[ \frac{15 \times 16}2\right]^2 -\left[\frac{15 \times 16 \times 31}6\right]\)
\(= 27560\)