Correct option is : (3) \(\frac{3 v}{4}\)
Escape velocity of object from planet is given by
\(\left(v_{e}\right)_{p}=\sqrt{\frac{2 G M_{p}}{R_{p}}}\)
\(\therefore \quad\left(v_{e}\right)_{p} \propto \sqrt{\frac{M_{p}}{R_{p}}}\)
Now, \(M_{p}=9 M_{e}\) and \(R_{p}=16 R_{e}\) (given)
\(\frac{\left(v_{e}\right)_{p}}{\left(v_{e}\right)_{e}}=\sqrt{\frac{M_{p}}{R_{p}} \times \frac{R_{e}}{M_{e}}}=\sqrt{\frac{9 M_{e}}{16 R_{e}} \times \frac{R_{e}}{M_{e}}}=\sqrt{\frac{9}{16}}=\frac{3}{4}\)
\(\Rightarrow \quad\left(v_{e}\right)_{p}=\frac{3}{4} v\)