Correct option is (2) 11.09 ms
Given \(Q=Q_0 e^{-R t / 2 L}\)
\(R=1.5 \Omega, L=12 \mathrm{mH}, \ln (2)=0.693\)
\(Q=0.5, Q_0, t=?\)
\(0.5 Q_0=Q_0 e^{-R t / 2 L}\)
\(\Rightarrow \frac{1}{2}=e^{-R t / 2 L}\)
Taking log on both sides
\(\ln \left(\frac{1}{2}\right)=\ln e^{-R t / 2 L} \)
\(\Rightarrow \ln 2=\frac{R t}{2 L}\)
\(t=\frac{2 L \ln 2}{R}=\frac{2 \times 12 \times 10^{-3} \times 0.693}{1.5}\)
\(t=11.09 \mathrm{~ms}\)