Correct option is (B) \( \frac {3\sqrt 2} {\sqrt {10}}\)
\(\cot^{-1} (\frac{-3}4) = \theta\)
\(\Rightarrow \cot = \frac{-3}4 = \frac bp\)
\(b = -3, p = 4\)
\(h^2 = p^2 + b^2\)
\(= 4^2 + (-3)^2\)
\(= 16 + 9\)
\(= 25\)
\(h = 5\)
\(\cos \theta = \frac bh = \frac{-3}5\)
\(\sin \frac \theta 2 + \cos \frac \theta 2 \)
\(= \sqrt{\frac{1 - \cos \theta}2} + \sqrt {\frac {1 + \cos \theta}2}\)
\(= \sqrt{\frac {1 + \frac35}2} + \sqrt{\frac{1 - \frac 35}2}\)
\(=\sqrt{\frac8{10}} + \sqrt{\frac2{10}}\)
\(=\sqrt{\frac4{5}} + \sqrt{\frac1{5}}\)
\(= \frac 2 {\sqrt 5} + \frac 1{\sqrt 5}\)
\(= \frac 3 {\sqrt 5}\)
\(= \frac {3\sqrt 2} {\sqrt {10}}\)