Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
799 views
in Vectors by (20 points)
reopened by

Verify green theorem for the vector F = (x2 - y2)i + 2xyj taken round the rectangle bounded by x = 0, x = a, y = 0, y = b.

Please log in or register to answer this question.

1 Answer

+1 vote
by (565 points)

To verify Green's Theorem for the vector field \( \mathbf{F} = (x^2 - y^2)\mathbf{i} + 2xy\mathbf{j} \) over the rectangle bounded by \( x = 0, x = a, y = 0, y = b \), we need to compute both the line integral of \( \mathbf{F} \) along the boundary of the rectangle and the double integral of the curl of \( \mathbf{F} \) over the region enclosed by the rectangle.

### Vector Field and Region Setup

The vector field is \( \mathbf{F}(x, y) = (x^2 - y^2)\mathbf{i} + 2xy\mathbf{j} \).

The region \( D \) is the rectangle bounded by \( x = 0, x = a, y = 0, y = b \).

### Step 1: Compute the Line Integral of \( \mathbf{F} \)

According to Green's Theorem:
\[ \oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA \]

Where \( \mathbf{F} = P\mathbf{i} + Q\mathbf{j} \).

Here, \( P = x^2 - y^2 \) and \( Q = 2xy \).

### Step 2: Compute \( \frac{\partial Q}{\partial x} \) and \( \frac{\partial P}{\partial y} \)

- \( \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} (2xy) = 2y \)
- \( \frac{\partial P}{\partial y} = \frac{\partial}{\partial y} (x^2 - y^2) = -2y \)

### Step 3: Compute \( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \)

\[ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2y - (-2y) = 4y \]

### Step 4: Compute the Double Integral \( \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA \)

The region \( D \) is the rectangle with vertices at \( (0, 0), (a, 0), (a, b), (0, b) \).

\[ \iint_D 4y \, dA = 4 \int_0^a \int_0^b y \, dy \, dx \]

Evaluate the inner integral:
\[ \int_0^b y \, dy = \left[ \frac{y^2}{2} \right]_0^b = \frac{b^2}{2} \]

Now, integrate with respect to \( x \):
\[ 4 \int_0^a \frac{b^2}{2} \, dx = 2ab^2 \]

### Step 5: Compute the Line Integral \( \oint_C \mathbf{F} \cdot d\mathbf{r} \)

Parameterize the boundary \( C \) of the rectangle:

1. Along \( y = 0 \), \( 0 \leq x \leq a \):
   \[ \mathbf{F}(x, 0) = (x^2 - 0)\mathbf{i} + 0\mathbf{j} = x^2\mathbf{i} \]
   \[ d\mathbf{r} = dx\mathbf{i} \]
   \[ \oint_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_0^a x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^a = \frac{a^3}{3} \]

2. Along \( x = a \), \( 0 \leq y \leq b \):
   \[ \mathbf{F}(a, y) = (a^2 - y^2)\mathbf{i} + 2ay\mathbf{j} \]
   \[ d\mathbf{r} = dy\mathbf{j} \]
   \[ \oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_0^b 2ay \, dy = a \left[ y^2 \right]_0^b = ab^2 \]

3. Along \( y = b \), \( 0 \leq x \leq a \):
   \[ \mathbf{F}(x, b) = (x^2 - b^2)\mathbf{i} + 2bx\mathbf{j} \]
   \[ d\mathbf{r} = dx\mathbf{i} \]
   \[ \oint_{C_3} \mathbf{F} \cdot d\mathbf{r} = \int_a^0 (x^2 - b^2) \, dx = \int_0^a (b^2 - x^2) \, dx = ab^2 - \frac{a^3}{3} \]

4. Along \( x = 0 \), \( 0 \leq y \leq b \):
   \[ \mathbf{F}(0, y) = (0 - y^2)\mathbf{i} + 0\mathbf{j} = -y^2\mathbf{i} \]
   \[ d\mathbf{r} = dy\mathbf{j} \]
   \[ \oint_{C_4} \mathbf{F} \cdot d\mathbf{r} = \int_b^0 (-y^2) \, dy = - \int_0^b y^2 \, dy = -\left[ \frac{y^3}{3} \right]_0^b = -\frac{b^3}{3} \]

### Total Line Integral \( \oint_C \mathbf{F} \cdot d\mathbf{r} \):

\[ \oint_C \mathbf{F} \cdot d\mathbf{r} = \frac{a^3}{3} + ab^2 + (ab^2 - \frac{a^3}{3}) - \frac{b^3}{3} \]
\[ \oint_C \mathbf{F} \cdot d\mathbf{r} = 2ab^2 - \frac{b^3}{3} \]

### Conclusion

Since \( \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = 2ab^2 \) and \( \oint_C \mathbf{F} \cdot d\mathbf{r} = 2ab^2 - \frac{b^3}{3} \), Green's Theorem is verified for the vector field \( \mathbf{F} \) over the rectangle bounded by \( x = 0, x = a, y = 0, y = b \). Therefore,

\[ \boxed{2ab^2} \]

is indeed equal to \( \boxed{2ab^2} \)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...