Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
253 views
in Physics by (20 points)
edited by

If vector \( (\hat{a}+2 \hat{b}) \) is perpendicular to vector \( (5 \hat{a}-4 \hat{b}) \), then find the angle between \( \hat{a} \) and \( \hat{b} \).

Please log in or register to answer this question.

2 Answers

0 votes
by (565 points)
If two vectors are perpendicular, their dot product is zero. So, we can set up the equation:

(â + 2b) · (5â - 4b) = 0

Expanding the equation, we get:

5â · â - 4â · b + 10b · â - 8b · b = 0

Since â · â = |â|^2 and b · b = |b|^2, we can simplify the equation to:

5|â|^2 - 4â · b + 10b · â - 8|b|^2 = 0

Now, we can use the fact that â · b = |â||b|cos(θ), where θ is the angle between â and b. Substituting this into the equation, we get:

5|â|^2 - 4|â||b|cos(θ) + 10|â||b|cos(θ) - 8|b|^2 = 0

Simplifying the equation, we get:

5|â|^2 + 6|â||b|cos(θ) - 8|b|^2 = 0

Now, we can solve for cos(θ):

cos(θ) = (-5|â|^2 + 8|b|^2) / (6|â||b|)

Since -1 ≤ cos(θ) ≤ 1, we can find the angle θ:

θ = arccos((-5|â|^2 + 8|b|^2) / (6|â||b|))

This is the angle between â and b. Note that the exact value of θ will depend on the magnitudes of â and b.
0 votes
by (565 points)
यदि दो वेक्टर \((\hat{a} + 2\hat{b})\) और \((5\hat{a} - 4\hat{b})\) एक-दूसरे के लंबवत (perpendicular) हैं, तो इनका डॉट प्रोडक्ट शून्य होगा।

डॉट प्रोडक्ट के नियम के अनुसार, यदि \(\mathbf{u} \cdot \mathbf{v} = 0\), तो \(\mathbf{u}\) और \(\mathbf{v}\) एक-दूसरे के लंबवत होते हैं।

दिए गए वेक्टर हैं:

\[

\mathbf{u} = \hat{a} + 2\hat{b}

\]

\[

\mathbf{v} = 5\hat{a} - 4\hat{b}

\]

इनका डॉट प्रोडक्ट निम्नलिखित है:

\[

\mathbf{u} \cdot \mathbf{v} = (\hat{a} + 2\hat{b}) \cdot (5\hat{a} - 4\hat{b})

\]

डॉट प्रोडक्ट निकालने के लिए:

\[

\mathbf{u} \cdot \mathbf{v} = \hat{a} \cdot 5\hat{a} + \hat{a} \cdot (-4\hat{b}) + 2\hat{b} \cdot 5\hat{a} + 2\hat{b} \cdot (-4\hat{b})

\]

अब, \(\hat{a} \cdot \hat{a} = 1\) और \(\hat{b} \cdot \hat{b} = 1\) होता है, जबकि \(\hat{a} \cdot \hat{b} = \cos \theta\) और \(\hat{b} \cdot \hat{a} = \cos \theta\) होता है।

इसलिए:

\[

\mathbf{u} \cdot \mathbf{v} = 5(\hat{a} \cdot \hat{a}) + (-4)(\hat{a} \cdot \hat{b}) + 10(\hat{b} \cdot \hat{a}) + (-8)(\hat{b} \cdot \hat{b})

\]

\[

= 5 \cdot 1 + (-4 \cos \theta) + 10 \cos \theta + (-8 \cdot 1)

\]

\[

= 5 - 8 + (-4 \cos \theta + 10 \cos \theta)

\]

\[

= -3 + 6 \cos \theta

\]

चूँकि ये वेक्टर लंबवत हैं, इसलिए इनका डॉट प्रोडक्ट शून्य होगा:

\[

-3 + 6 \cos \theta = 0

\]

\[

6 \cos \theta = 3

\]

\[

\cos \theta = \frac{3}{6} = \frac{1}{2}

\]

अतः \(\theta\) का मान:

\[

\theta = \cos^{-1}\left(\frac{1}{2}\right) = 60^\circ

\]

इस प्रकार, \(\hat{a}\) और \(\hat{b}\) के बीच का कोण \(60^\circ\) है।

No related questions found

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...