First we will calculate [H3O+] from Ka1
At equilibrium :
\(\underset{0.1-Y}{H_3A(aq.) }+ H_2O(I) \rightleftharpoons \underset{Y}{H_3O^ + (aq.)} + \underset Y{H_2A^-(aq.)}\)
\(Ka_1 = \frac{[H_2A^-][H_3O^+]}{[H_3A]}\)
\(10^{-5} = \frac{Y \times Y}{0.1 - Y}\)
since Ka1 is small , 0.1−Y ≈ 0.1
\(10^{-5} = \frac{Y\times Y}{0.1}\)
10−6 = Y × Y
⇒ Y2 = 10−6
⇒ Y = 10−3 = [H3O+]
Now from Ka3, we will calculate X
where,
\(X= \frac{[A^{3-}]}{[HA^{2-}]}\)
At equilibrium,
\(HA^{2-}(aq) + H_2O (I) \rightleftharpoons H_3O^+(aq) + A^{3-}(aq)\)
\(Ka_3 = \frac{[A^{3-}][H_3O^+]}{[HA^{2-}]}\)
⇒ Ka3 = X × [H3O+]
Putting value of [H3O+] and Ka3,
⇒ 10−13 = X × 10−3
⇒ X = 10−10
⇒ pX = −logX = −log(10−10) = 10