To solve the problem, we need to calculate the angular position of the 9th maximum in a double-slit interference pattern. We'll use the formula for the angular position of the maxima:
\[ \theta_n = \frac{n \lambda}{d} \]
where:
- \( \theta_n \) is the angular position of the nth maximum.
- \( n \) is the order of the maximum (for the 9th maximum, \( n = 9 \)).
- \( \lambda \) is the wavelength of the light.
- \( d \) is the distance between the slits.
Given:
- \( \lambda = 6000 \) Å = \( 6000 \times 10^{-10} \) m
- \( d = 0.1 \) cm = \( 0.1 \times 10^{-2} \) m = \( 1 \times 10^{-3} \) m
- \( n = 9 \)
Now, we can substitute these values into the formula:
\[ \theta_9 = \frac{9 \times 6000 \times 10^{-10} \text{ m}}{1 \times 10^{-3} \text{ m}} \]
\[ \theta_9 = \frac{9 \times 6000 \times 10^{-10}}{1 \times 10^{-3}} \]
\[ \theta_9 = \frac{54000 \times 10^{-10}}{10^{-3}} \]
\[ \theta_9 = 54000 \times 10^{-7} \]
\[ \theta_9 = 5.4 \times 10^{-3} \text{ radians} \]
So, the angular position of the 9th maximum is \( 5.4 \times 10^{-3} \) radians.