Since fringe width,
ß = \(\frac{\lambda D}{d}\)
When D' = \(\frac{D}{2}\) and d' = \(\frac{d}{2},\) then
The new fringe width,
ß' = \(\frac{\lambda D'}{d'} = \frac{\lambda D}{2} \times \frac{2}{d}\)
= \(\frac{\lambda D}{d} = \beta\)
i.e. the fringe width remains the same.