Correct option is (4) an equivalence relation
Given,
\(R = a, b:2a + 3b\) is divisible by 5 for \(a, b\in N\)
Reflexive:
\(2a + 3a = 5a\) is always divisible by 5.
So, \(a, a\in R\)
Symmetric:
Let \(a, b\in R\) i.e., \(2a + 3b = 5\lambda\), where \(\lambda \in Z^+\).
Now,
\(5a + 5b\) = multiple of 5
⇒ \(2a + 3b + 2b + 3a\) = multiple of 5
⇒ \(5\lambda + 2b + 3a\) = multiple of 5
⇒ \(2b + 3a\) = multiple of \(5 -5 \lambda\)
So, \(2b + 3a\) is divisible by 5.
Transitive:
Let \(a, b, b , c \in R\), then
\(2a+ 3b = 5\lambda_1;\lambda_1 \in Z^+\)
\(2b+ 3c= 5\lambda_2;\lambda_2 \in Z^+\)
So,
\(2a + 5b + 3c = 5(\lambda_1 + \lambda_2)\)
⇒ \(2a + 3c = 5(\lambda_1 + \lambda_2 - b)\)
Hence, \(2a+ 3c\) is divisible by 5, so \(a, c \in R\)
Hence, R is an equivalence relation.