Given expression: \((- \sqrt{3} - 1)^{2/3}\)
1. Simplify inside the parentheses:
\(- \sqrt{3} - 1\) can be rewritten as \(- (\sqrt{3} + 1)\).
2. Take the absolute value:
\(| - (\sqrt{3} + 1) | = \sqrt{3} + 1\) (since we're dealing with the absolute value of a negative expression).
3. Raise to the power of \(2/3\):
\((\sqrt{3} + 1)^{2/3}\).
Therefore, the simplified expression is:
\[ (-\sqrt{3} - 1)^{2/3} = (\sqrt{3} + 1)^{2/3} \]