Let \(\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=3 \hat{i}-7 \hat{j}+8 \hat{k}, \vec{c}=5 \hat{i}-4 \hat{j}+12 \hat{k}\)
\(\therefore \vec{a} \cdot(\vec{b} \times \vec{c})=[\vec{a} \vec{b} \vec{c}] \)
\( =\left|\begin{array}{rrr}
2 & 3 & 4 \\
3 & -7 & 8 \\
5 & -4 & 12
\end{array}\right| \)
\(= 2(-84+32)-3(36-40)+4(-12+35) \)
\( =2(-52)-3(-4)+4(23)\)
\(=-104+12+92=-104+104= 0\)