\((a) \ \vec A = 3\hat{i} + 4\hat{j}\ and\ \vec B = 12\hat{i} - 5\hat{j}\)
\(\text{(i)} \ |\vec A| = \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16 } = \sqrt{25} = 5 \)
∴ A = 5 unit
\(\vec A.\vec B = (3\hat{i} + 4\hat{j}) .(12\hat{i} - 5\hat{j})\)
\( = 36\hat{i}.\hat{i} - 15\hat{i}\ \hat{j} + 48\hat{j}.\hat{i} - 20\hat{j}.\hat{j}\)
= 36 - 0 + 0 - 20
\(\text{(b)}\ \vec A = 2\hat{i} + 3\hat{j} - 5\hat{k}\)
\(\therefore \ |\vec A| = \sqrt{(2)^2 + (3)^2 + (-5)^2} = \sqrt{4+ 9 +25 } = \sqrt{38}\)
or A = \(\sqrt{38}\) unit