\(\vec A = 2\hat{i} + 3\hat{j} + 8\hat{k}\ and\ \vec B = -4\hat{i} - 4\hat{j} + \alpha\hat{k}\)
\(\therefore\ \vec A.\vec B = (2\hat{i} + 3\hat{j} + 8\hat{k}).(-4\hat{i} - 4\hat{j} + \alpha\hat{k})\)
= -8 + 12 + 8α
= 4 + 8α
If \(\vec A\ \bot\vec B\ \)then \(\vec A.\vec B = 0\)
\(\therefore\ 4 + 8\alpha = 0\Rightarrow\alpha = -\frac{1}{2}\)
Thus, option (c) is correct.