Correct option is : (d) 12 ms-2
x = 8 + 12t - t3
∴ Velocity \(v = \frac{dx}{dt} = \frac{d}{dt}(8 + 12t -t^3)\)
or v = 12 - 3t2
If v = 0, then 12 - 3t2 = 0 ⇒ t2 = 4 ⇒ t = 2s
Now acceleration
\(a = \frac{dv}{dt} = \frac{d}{dt}(12-3t^2) = -6t\)
∴ For v = 0 i.e., at t = 2s
a = -6 x 2 = -12 ms-2
∴ Retardation = 12 ms-2
Hence, alternative (d) is correct.