Correct option is (C) \(\frac {5\rho}3 \left(\frac { l}{4} \right)^3\)

\(I_1 = I_2 = (m). \left(\frac l4\right)^2\)
\(= \frac {(\rho. \frac l4). (\frac l4)^2}3\)
\(= \frac{\rho.l^3}{3 \times 4^3}\)
\(= \frac{\rho l^3}{3 \times 64}\)
\(I_3 = \int r^2 .dm\)
For each dm mass on all wire

r = same = \(\frac l4\)
\(I_3 = \left[\frac l4\right]^2 \int dm\)
\(I_3 = \frac {l^2}{16} \times (8m)\)
\(= \frac {l^2}{16} \times \left[\rho . \frac l4 \right]\)
\(I_3 = \frac {\rho l^3}{64}\)
\(I = I_1 + I_2+ I_3\)
\(= \frac {\rho l^3}{3 \times 64} + \frac {\rho l63}{3 \times 64} + \frac {\rho l^3}{64}\)
\(= \frac {\rho l ^3}{64}\left[ \frac 23 + 1\right]\)
\(= \frac 53 \left(\frac {\rho l^3}{64} \right)\)
\(= \frac {5\rho}3 \left(\frac { l}{4} \right)^3\)