Correct option is b) 1.06 atm
We know,
\(n \propto \frac VT\)
Volume of the nitrogen flask is three times volume of He-flask
\(\frac{n_{He}}{n_{N_2}} = \frac 13 \times \frac{400}{200} =\frac 23\)
Also,
\(n_{He} + n_{N_2} = 8\)
Volume of the nitrogen flask is three times volume of He-flask
\(\Rightarrow n_{He} = \frac{16}5, n_{N_2} = \frac{24}5\)
Since volume of the Helium flask remains constant-
Also, \(\frac 1{300 \times 2} = \frac P{200 \times \frac{16}5}\)
\(\Rightarrow P = 1.06 atm\)