Given: Mass of the disc M = 16 kg
Radius R = \(\frac{0.5}{2}\) = 0.25 m; t = 8 s
ω1 = 0; ω2 = 2πn2 = 2π x \(\frac{120}{60}\) = 4π rad.s-1
From first equation of rotational motion,
ω = ω0 + α.t
ω2 = ω1 + αt
or ω2 = 0 + α.t
\(\therefore\ \alpha = \frac{\omega^2}{t} = \frac{4\pi}{8} = \frac{\pi}{2} = \frac{3.14}{2} = 1.57\ rad.s^{-1}\)
Moment of inertia of the disc,
\(i = \frac{1}{2}MR^2 = \frac{1}{2}\times16\times(0.25)^2 = 8\times0.0625\)
= 0.5 kgm2
\(\therefore\ \tau = I\alpha = 0.5\frac{\pi}{2} = \frac{\pi}{4}\ Nm\)
Rate of doing work i.e., power
\(P = \tau\omega = \frac{\pi}{4}\times4\pi = \pi^2\)
or P = π2 watt