Angular momentum L = Iω and kinetic energy K = \(\frac{1}{2}\) Iω2

When angular velocity is doubled and kinetic energy is halved, then angular momentum,
\(L' = \frac{2\left(\frac{K}{2}\right)}{2\omega} = \frac{K}{2\omega} = \frac{2K}{4\omega} = \frac{L}{4}\ or\ L' = \frac{L}{4}\)