Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
138 views
in Definite Integrals by (75 points)
24. If \( \int_{0}^{100 \pi} \frac{\sin ^{2} x}{\left.e^{\left(\frac{x}{\pi}\left(\frac{x}{\pi}\right)\right.}\right)} d x=\frac{\alpha \pi^{3}}{1+4 \pi^{2}}, \alpha \in R \), where \( [x] \) is the greatest integer less than or equal to \( x \), then the value of \( \alpha \) is [JEE (Main)-2021] 30. (1) \( 50(e-1) \) (2) \( 100(1-e) \) (3) \( 150\left(e^{-1}-1\right) \) (4) \( 200\left(1-e^{-1}\right) \)

Please log in or register to answer this question.

1 Answer

0 votes
by (57.1k points)

Correct option is (4) \(200\left(1-e^{-1}\right)\)

\(I=\int\limits_0^{100 \pi} \frac{\sin ^2 x}{e^{\frac{x}{\pi}}\left[\frac{x}{\pi}\right]} d x \)

\(\because \text { Integrand is periodic with period } 1\)

\(\therefore I=100 \int\limits_0^\pi \frac{\sin ^2 x}{\left\{\frac{x}{\pi}\right\}} d x\)

\( \text { Let } \frac{x}{\pi}=t \Rightarrow d x=\pi d t \)

\(\Rightarrow I=100 \pi \int\limits_0^1 \frac{\sin ^2(\pi t) d t}{e^t}\)

\(=50 \pi \int\limits_0^1 e^{-t}(1-\cos 2 \pi t) d t\)

\(=50 \pi \int\limits_0^1 e^{-t} d t-50 \pi \int\limits_0^1 e^{-t} \cos (2 \pi t) d t\)

\(=-50 \pi\left[e^{-t}\right]_0^1\)

\(-50 \pi\left[\frac{e^{-t}}{1+4 \pi^2}(-\cos 2 \pi t+2 \pi \sin 2 \pi t)\right] ^1_0\)

\(\left(\because \int e^{a x} \cdot \cos b x d x=\frac{e^{a x}}{a^2+b^2}(a \cos b x+b \sin b x)+c\right)\)

\(=-50 \pi\left(e^{-1}-1\right)-\frac{50 \pi}{1+4 \pi^2}\left(e^{-1}(-1+0)-(-1+0)\right) \)

\(=-50 \pi\left(e^{-1}-1\right)-\frac{50 \pi}{1+4 \pi^2}\left(1-e^{-1}\right)\)

\(=-50 \pi\left(e^{-1}-1\right)-\frac{50 \pi\left(1-e^{-1}\right)}{1+4 \pi^2} \)

\(=\frac{200 \pi^3\left(1-e^{-1}\right)}{1+4 \pi^2}=\frac{a \pi^3}{1+4 \pi^3}\quad\text{(Given) }\)

\(\therefore a=200\left(1-e^{-1}\right)\)

Related questions

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...