Given, A = R - {2} and B = R - {1}
f: A → B id defined as f(x) = \(\frac{x-1}{x-2}\)
(i) One-one : Let x, y e A such that f(x) = f(y)
⇒ \(\frac{x-1}{x-2}\) = \(\frac{y-1}{y-2}\) ⇒ (x -1) (y - 2) = (x - 2) (y -1)
⇒ xy - 2x - y + 2 = xy - x - 2y + 2
⇒ -2x - y = -x - 2y
⇒ 2x - x = 2y - y
⇒ x = y
So, f is one-one function.
(ii) Onto : Let y ∈ B = R - {1}. Then y ≠ 1.
The function f is onto if there exists x ∈ A such that f(x) = y

Therefore, f is onto.
Hence, function f is one-one and onto.
From equation (i), we get f-1(y) = \(\frac{1 - 2y}{1 - y}\)
⇒ f-1 (x) = \(\frac{1 - 2x}{1 - x}\), which is the inverse of f(x)