Given, matrix equation is:
\(\begin{bmatrix} x-y & 2x+z \\ 2x-y & 3z+ \omega \\ \end{bmatrix}=\) \(\begin{bmatrix} -1 & 5 \\ 0 & 13 \\ \end{bmatrix}\)
On equating the corresponding elements, we get
x - y = - 1 ...... (i)
2x - y = 0 ....... (ii)
2x + z = 5 ...... (iii)
3z + w = 13 .......... (iv)
Subtracting eq. (ii), from (i), we get

Substituting x = 1 in eq. (i), we get
1 - y = - 1
⇒ - y = - 2
⇒ y = 2
Substituting the value of x in Eq. (iii), we get
2 × 1 + z = 5
⇒ z = 5 - 2 = 3
Substituting the value of z in Eq. (iv), we get
3 × 3 + w = 13
⇒ w = 13 - 9
w = 4
Thus, x = 1, y = 2, z = 3, w = 4