Correct option is (D) \(2025 + (2025)^2\)
For a square matrix A of order \(n \times n\), we have \(A.(adj\ A) = |A|I\), where \(I_n\) is the identity matrix of order \(n \times n\).
So, \(A. (adj\ A) = \begin{bmatrix} 2025 &0&0\\0&2025&0\\0&0&2025\end{bmatrix} = 2025 I\)
\(\Rightarrow |A| = 2025\) & \(|adj\ A| = |A|^{3-1} = (2025)^2\)
\(\therefore |A| + |adj\ A| = 2025 + (2025)^2\)