\({y}=\tan ^{-1} {x} \) and \({z}=\log _{{e}} {x}\)
Then \(\frac{d y}{d x}=\frac{{1}}{1+{x}^{2}}\)
and \(\frac{{dz}}{{d x}}=\frac{1}{{x}}\)
So,
\(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
\(=\frac{\frac{1}{1+\mathrm{x}^{2}}}{\frac{1}{\mathrm{x}}}\)
\(=\frac{\mathrm{x}}{1+\mathrm{x}^{2}}\)