Correct option is (C) −10
\(f(x) = 4x - \frac 12 x^2\)
Being a polynomial function f(x) is differentiable \(\forall x \in \left(-2, \frac 92\right)\)
\(f'(x) = 4 -x\)
\(f'(x) = 4 -x = 0\)
\(\Rightarrow x = 4\)
For the function \(f(x) = 4x - \frac 12 x^2\) in the interval \(\left[-2, \frac 92\right]\), the end points are
\(x = -2\ \&\ x = \frac92\)
∴ The absolute minimum value of the function \(f(x) = 4x - \frac 12 x^2\) in the interval \(\left[-2, \frac 92\right]\) is
\(\text{Min}\left \{f(-2), f(4), f(\frac 92)\right\} = \text{Min} \left\{-10, 8, \frac{63}8 \right\} = -10\)