y = ax2 + bx + c
Owl passes through the points (1, 2), (2, 1) and (4, 5). So, it must satisfy the given equation
Therefore,
2 = a + b + c
1 = 4a + 2b + c
5 = 16a + 4b + c
Now, \(D = \begin{vmatrix} 1&1&1\\4&2&1\\16&4&1\end{vmatrix} = 1 (2- 4) -1 (4 - 16) + 1(16 - 32) = -6\ne 0 \)
\(D_a = \begin{vmatrix} 2&1&1\\1&2&1\\5&4&1\end{vmatrix} = 2(2 - 4) -1(1 - 5) + 1(4 - 10) = -6\)
\(D_b= \begin{vmatrix} 1&2&1\\4&&1\\16&5&1\end{vmatrix} = 1(1 - 5) - 2 (4 - 6) + 1 (20 - 16) = 24\)
and \(D_{c}=\left|\begin{array}{ccc}1 & 1 & 2 \\
4 & 2 & 1 \\
16 & 4 & 5\end{array}\right|=1(10-4)-1(20-16)+2(16-32)=-30\)
\(\therefore a=\frac{D_{a}}{D}=\frac{-6}{-6}=1 , b=\frac{D_{b}}{D}=\frac{24}{-6}=-4, c=\frac{D_{c}}{D}=\frac{-30}{-6}=5\)
Therefore, equation of the curve is \(y=x^{2}-4 x+5\)
When owl is sitting at (0, k) then \({x}={0} \Rightarrow {k}={5}\)