Correct option is : (a) vP + vR = 2vQ

Apparent frequency of M and N at P

Apparent frequency of M, N at R
\(f _\overset{"}{M} = (\frac{V - V_0}{V})\ f_M\)


\(\sec^2\theta\frac{d\theta}{dt} = -\frac{10}{x^2}\frac{dx}{dt}\)
\(\frac{d\theta}{dt} = \frac{10v}{x^2\sec ^2\theta}\)
\(x = 10\ cot\theta\)
\(\frac{dv}{dt} = (-\frac{v}{110})\sin\theta(\frac{10v}{x^2\sec^2\theta})\)
\(|\frac{dv}{dt}| \propto\sin^3\theta\)
(c) \(|\frac{dv}{dt}|\ \) is maximum at Q.