Given, differential equation is

⇒ log |1 + y| + log|2 + sin x| = log C
⇒ log (|1 + y| |2 + sin x|) = log C [∵ log m + log n = log mn]
⇒ (1 + y) (2 + sin x) = C .............. (i)
Also, given that at x = 0, y = 1.
On putting x = 0 and y = 1 in Eq. (i), we get
(1 + 1) (2 + sin 0) = C ⇒ C = 4
On putting C = 4 in Eq. (i), we get
(1 + y) (2 + sin x) = 4
