The required plane passes through two points P(2, 1, - 1) and Q(- 1, 3, 4).
Let \(\overrightarrow a and \overrightarrow b\) be the position vectors of points P and Q, respectively.
Then, \(\overrightarrow a\) = 2î + ĵ - k̂
and \(\overrightarrow b\) = - î + 3ĵ + 4k̂
Now, \(\overrightarrow {PQ} = \overrightarrow b - \overrightarrow a \) = (- î + 3ĵ + 4k̂) - (2î + ĵ - k̂)
= - 3î + 2ĵ + 5k̂
Let \(\overrightarrow {n_1}\) be the normal vector to the required plane.
Then,
\(\overrightarrow {n} = \overrightarrow {n_1} \times \overrightarrow {PQ} =\) \(\begin{vmatrix}
\hat i & \hat j & \hat k \\[0.3em]
1 & -2 & 4 \\[0.3em]
-3 & 2 & 5
\end{vmatrix}\)
= î(- 10 - 8) - ĵ(5 + 12) + k̂(2 - 6)
= - 18î - 17ĵ - 4k̂
The required plane passes through a point having position vector \(\overrightarrow a\) = 2î + ĵ - k̂ and normal vector \(\overrightarrow n\) = - 18î - 17ĵ - 4k̂ . So, its vector equation is
\((\overrightarrow r - \overrightarrow a) . \overrightarrow n \implies \overrightarrow r .\overrightarrow n = \overrightarrow a . \overrightarrow n\)
⇒ \(\overrightarrow r\). (- 18î - 17ĵ - 4k̂) = (2î + ĵ - k̂) (- 18î - 17ĵ - 4k̂)
⇒ \(\overrightarrow r\). (- 18î - 17ĵ - 4k̂) = - 36 - 17 + 4
∴ \(\overrightarrow r\). (18î + 17ĵ + 4k̂) = 49