First Method
From ideal gas equation,
\(p = \frac{nRT}{V}\)
T 27 + 273 = 300 K
R = 0.0821 L atm K-1mol-1
V = 2.461 L
Partial pressure of Nitrogen:
\(P'_{N_2} = \frac{0.3\times 0.0821\times 300}{2.461} = 3.002\ atm\)
Partial pressure of Helium
\(P'_{He} = \frac{0.5\times 0.0821\times 300}{2.461}\)
= 5.004 atm
Partial pressure of Oxygen
\(P'_{O_2} = \frac{6.2\times 0.0821\times 300}{2.461}\)
= 62.050 atm
Second Method:
Total number of moles in mixture
0.3 + 0.5 + 6.2= 7 moles
Total pressure \('PT' = \frac{n\times R\times T }{V}\)
\( = \frac{7\times 0.0821\times 300}{2.461}\)
= 70.06 atm
Partial pressure = Total pressure × mole fraction Now, partial pressure of Nitrogen
P'N2 = PT × Mole fraction of N2 gas
\( = 70.06\times \frac{moles \ of\ N_2\ gas}{Tootal\ moles}\)
= 3.002 atm
Partial pressure of Helium
\(P_{He} = \frac{70.06\times 0.5}{7}\)
= 5.004 atm
Partial pressure of Oxygen
\(P'_{O_2} = \frac{70.06\times 6.2}{7}\)
= 62.050 atm